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S V E N S K A  G E O F Y S I S K A  F O R E N I N G E N  

VOLUME 2, NUMBER 4 Te 1 I u s NOVEMBER lyjo 

A Q U A R T E R L Y  I O U R N A L  O F  G E O P H Y S I C S  

Numerical Integration of the Barotropic Vorticity Equation 

By J. G. CHARNEY, R. FJORTOFT", J. von NEUMANN 
The Institute for Advanced Study, Princeton, Ncw Jersey2 

(Manuscript received I November 1950) 

Abstract 
A method is given for  the numerical solution of the barotropic vortiLity equation 

over a limited area of the earth's surface. T h e  lack of a natural boundary calls for  an 
investigation of the appropriate boundary conditions. These are determined by  a 
heuristic argument  and are shown to be sufficient i n  a special case. Approximate 
conditions necessary to insure the inathematical stability of the differcnce equation 
are derived. T h e  results of a series of four  z4-hour forecasts computed  f r o m  actual 
data at the 5 0 0  m b  level are presentcd, together with an  interpretation and analysis. 
An at tempt  is made to determine the causes of the forecast errors. These arc ascribed 
partly to the use of too  large a space increment  and partly t o  the effects of baroclinicity. 
T h e  rBle of the latter is investigated i n  some detail by  means of a simple baroclinic model. 

I. Introduction 

Tlvo years ago the Meteorological Research 
Group at the Institute for Advanced Study 
adopted the general plan of attacking the 
problem of numerical weather prediction by 
a step by step investigation of a series of models 
approximating more and more the real state 
of the atmosphere. In accordance with this 
plan the twodimensional barotropic model 
was chosen as the first object of study. The 
first two publications3 dealt with the numerical 
properties of the linearized barotropic equa- 
tions as a preparation for the numerical integra- 
tion of the non-linear equations. Such integra- 

O n  leave froin Det  Norske Meteorologiske 

2 This w o r k  was prepared under  Contract  

CHARNEY (1949). CHARNEY and ELIASSEN (1949). 

Institutt, Oslo, Norway.  

h--6-ori-I 39 with the Office of Naval Research. 
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tions have now been performed and will be 
described in the present article. 

These integrations would not have been 
possible without the use of a high-speed large- 
capacity computing instrument. We  should 
lke, therefore, to express our warmest thanks 
to the U. S. Army Ordnance Department and 
the administration of the Ballistic Research 
Laboratories in Aberdeen, Maryland for 
having generously given us the use of their 
electronic computing machine (The Eniac 
[compare footnote 51). The request for the 
use of the Eniac was made on our behalf by 
the U. S .  Weather Bureau and we should like 
to thank them also for their gratifying in- 
terest and support. 

The reasons for regarding the integration 
of the barotropic equations as an essential 



23 8 J. G. CHARNEY, R. FJORTOFT, J. VON NEUMANN 

first step of thc general program arc as follows: 
(I) An accumulation of evidence indicates 
first that the effects of baroclinicity do not 
manifest themselves in a steady, widespread 
conversion of potential into kinetic cncrgy, but 
rather in sporadic and violent local over- 
turnings accompanying what, for want of a 
better term, may be called baroclinic instability, 
and second, that when thesc effects are not 
predominant, the motion is quasi-barotropic. 
It is hoped therefore that the barotropic prc- 
dictions, by their agreements and disagreenicnts 
with observation, will provide a basis for an 
a priori classification of thc large-scale atmos- 
pheric motions. One has thc suspicion that 
,certain processes which have heretofore been 
classcd as baroclinic will be found to have a 
barotropic explanation. ( 2 )  If thc barotropic 
forccasts arc found to be sufficiently accurate 
approximations to the upper flow, it is possible 
that they can bc profitably incorporated into 
practical forecast proccdurc. (3) Just as the 
analysis of the lincarizcd barotropic equations 
scrvcd as a pilot study for the intcgratioii of 
the non-linear barotropic equations, so will 
these integrations supply the necessary back- 
groiuid for the trcatmcnt of thc tliree- 
dimensional equations. 

The most casily integrated of thc baro- 
tropic equations arc the primitive Eulcriati 
cquations, in which tlic local time derivatives 
of the field variables are given cxplicitly in 
ternis of their spacc derivatives. Although 
the virtual unobservability of the geostrophic 
deviation and the horizontal divcrgencc 
renders the initial time derivatives in the 
Eulcrian equations highly inaccurate, thc in- 
dications arc that, contrary to an carlier im- 
pression4, thc error will occur only as a smalI 
amplitude gravitational oscillation about an 
cssentially corrcct largc-scale flow - provid- 
ing the spacc and time increments in the 
finite difference cquations are chosen to 
satisfy the Courant-Fricdrichs-Lcwy condi- 
tion (19.~8) for the computational stability of 
the cquation governing the motion of long 
gravity waves. However two main considcra- 
tions led tlic writcrs to decide against at- 
tempting the integration of the Eulerian 
cquations at this time. First, the coniputa- 
tional stability condition states that tlic ratio 

of the spacc to the tinic difference iniist ex- 
cecd the gravitational wave velocity, about 
300 m sec-1, and demands a timc increment 
of SOIIIC: 1 5  minutes or less. This means that 
a twenty-four hour forecast would require 
nearly loo time cycles for the integration, a 
formidable number for thc machine that was 
availablc to the writers. Then there was also 
the difficulty that tlic characteristic property 
of largc-scale non-divergent barotropic ]no- 
tions, the conservation of absolute vertical 
vorticity, is obscured in the integration of 
thc Eulcriaii equations - which apply as wcll 
to the divergent gravity motions - and thc 
results thereby made extremely difficult to 
analysc and interpret. These difficulties hav- 
ing been regarded by the authors as serious, 
it was decided instcad to base thc computa- 
tion on the quasi-gcostrophic, non-divergent 
vorticity equation, in which the sole depcnd- 
cnt variable is thc height x of a fixed iso- 
baric surface. 

(7 z 
J t  

Bccausc of the elliptic character in - of the 

non-divergent vorticity cquation, z and certain 
of its space derivatives niust be specified as 
functions of time at the boundary of a limitcd 
forecast rcgion. Sincc these quantities are 
known only initially, one has to fix their values 
in a more or less arbitrary manner, and it 
bccomcs nccessary to know how rapidly 
influences from the boundary propagate into 
the forecast region. This problem has been 
treated by CHARNEY (1949) who arrived a t  
tlic conclusion that large-scale influcnccs travcl 
with a speed not radically different from that 
of the wind, and these influences consequently 
are provided for by integrating over an area 
not much larger than the forecast rcgion. 
Although it is immatcrial what values arc 
prescribed at the boundary, it is nevertheless 
important that, the inatheniatical form of the 
boundary conditions be known. Expericiicc 
has shown that a violation of these conditions 
may lead to errors adjacent to the boundary 
which propagate into the interior with de- 
muctivc effect. Since onc is dealing with 
boundaries at which the conditions are not 
naturally prcscribed by thc geometry of the 
motion, as for example at a wall, it is not inime- 
diately obvious what these conditions arc. A 
heuristic arguincnt will bc advanced to show 
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that the following are probably correct: where 
fluid is entering the region enclosed by the 
boundary both z and the relative vorticity 
must be prescribed, but where fluid is leaving 
the region it is enough to prescribe z. 

The first part of the following discussion, 
the mathematical part, is devoted to the treat- 
ment of the boundary conditions, the method 
of solution of the finite-difference vorticity 
equation, and the computational stability 
criteria. The second part contains a description 
and analysis of the results of four twenty-four 
hour forecasts computed from actual data 
and a final section devoted to an account of a 
baroclinic model which is used to explain 
some of the barotropic forecast discrepancies. 

11. The Vorticity Equation 

W e  assume that the horizontal winds in thc 
large-scale systems vary according to the law 

where sI, sz are orthogonal curvilinear distancc 
co-ordinates on the sphere, y is the vertical 
pressure co-ordinate, and po  the mean surface 
value of y. If a bar denotes a vertical prcs- 
sure average, I.c., 

the integrated vorticity equation takcs the 
approximate form (CHARNEY [I949, p. 3831) 

- 
- 

(3) 
__ (7 1' - - - v * v ( K T + f ) ,  
Ltr 

where T is the mean relative vertical vorticity 
component, f is the coriolis parameter, and 
K = Az/(A)z.  

- -  

If A* is defined by 
_ -  

A* = AZiA 

and (3) is multiplied by A*/A we obtain 

where v* and 5* are respectively the wind 

velocity and relative vorticity at the level p* 
defined by A (p*)  = A*. Since approximately 

( 5 )  = - (( +f) divv,  

y* is the level of non-divergence. It is known 
(CHARNEY [lot. c k ] )  that p ,  the level at which 
A = A and v = V, is between 600 and 500 
nib and that Az/At is approximately 1.25. 
Hence we have 

- 

-- 

- 
A* A2 

A A2 

and from the average variation of v with 
height we find that p* is approximately IOO 

nib higher than or between 500 and 400 mb. 
We  shall take this level to be 500 mb in the 
forecasts. 

Evaluating the vorticity. of the geostropliic 
wind 

1Vf.l = -. - - - = 1.25 - - 

(6) v* = - 3 k x v z ,  

where k is the unit vertical vector and z 
the height of the p* surface, we find 

and substituting this expression into (4) we 
obtain the quasi-geostrophic vorticity equation: 

(8) 
where q is the absolute vorticity 

Here A ,  is the surface spherical Laplacian 
operator, and /, is the Jacobian of q and z 
with respect to sI and s2. Equation (8) is 
taken to be the basic equation governing the 
large-scale motions in a barotropic atmosphere. 
Its solution may be found iteratively by solving 
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az 
3t 

for - and extrapolating the motion forward 

in time, but for this purpose the boundary 
conditions must first be ascertained. 

111. The Boundary Conditions 

Let R be a region of the earth bounded by 
the simple, closed, rectifiable curve C. If 
Asz  is known in R and z is given on C, z 
may be obtained in R by solving a Poisson's 
equation. Hence, if the boundary conditions 
are prescribed in such a way that z is always 
known on C and d,z is known in R, the 
solution to (8) for the region R will be deter- 
mined. Suppose now that z is a given func- 
tion of time on C, so that the tangential 
derivative and therefore the normal velocity 
is fixed, and that we know its values initially 
in R. Since according to (4) the absolute 
vorticity is advected with the fluid, after a 
small time 6t the distribution of dsz will be 
known everywhere in R except in the part, 
SR, which is penetrated by fluid from outside. 
If in addition d,z had been prescribed on 
that part of C where fluid was entering, we 
should also have been able to say exactly what 
vorticity had entered SR, since the normal 
velocity on C is known. Hence we may 
assert that the motion is determined by the speci- 
fication ofz everywhere on the boundary, and the 
vorticity on that part of the boundary at which 

jlirid is entering the interior region. 
To supplement the foregoing heuristic argu- 

ment we now give a demonstration of the 
sufficiency of these boundary conditions in 
the case of a special two-dimensional non- 
divergent flow which, however, appears to 
exhibit the essential mathematical properties 
of the barotropic flow. It will also be shown 
that the specification of only the stream func- 
tion docs not determine the motion. 

We consider the two-dimensional incom- 
pressible motion of an inviscid fluid on a 
circular cylinder, in which the force of gravity 
is directed radially inward so that no external 
forces act along its surface. Let y be directed 
along the axis of the cylinder and x be di- 
rected at right angles to y. Because of the 
incompressibility assumption we may intro- 
duce a stream function y and write for the 
vorticity equation 

JY 
at  n x JY  JY ax' 

3y  a - (3 (dy) = -- a (dy) - -- (dw) - 

an equation corresponding closely to (8). 
Consider the ring shaped domain bounded 

by the two circles y = o and y = a and 
prescribe the boundary conditions y = x on 
each circle for all t > 0. Also let y~ = x in the 
entire domain at t = 0. The motion consists 
initially of a uniform streaming parallel to the 
y-axis. It may easily be verified that there are an 
infinity of solutions of (10) satisfying the initial 
and boundary conditions of the form 

Y = x + [BPI - B(t-41 f - [B(t)-B(t-r)l, 

(1 1) 

(12) 

where /3 is limited solely by the requirement 

(t) = o for t 5 0. 

It is clear, therefore, that a knowledge of y in 
the boundary does not determine the motion. 
But the motion is determined if d y  is also 
specified on the boundary where fluid is en- 
tering, i.e., at y = 0: Let ( d ~ ) , , = ~  = F ( t ) ,  
then froin (11) and (12) 

and 
t a  

B(t) = / / F ( y )  dy  dE + At = G(t) + A t ,  
0 0  

where A is an arbitrary constant. Substitu- 
tion of this expression into (11) gives 

W = X  + [G( t ) -G( t -a)]  - - [ G ( t ) - G ( t - a ) ] ,  Y 
a 

and y is completely determined. 

IV. The Solution of the Vorticity Equation 

The following method of solving the finite 
difference vorticity equation is well-adapted 
to a variety of high-speed computing machines, 
although it was chosen specifically for use on 
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the Eniac.5 It is not, however, recommended 
for hand computation. 

The spherical earth is first mapped con- 
formally onto a plane. If m is the magnifica- 
tion factor, the Laplacian and Jacobian opera- 
tors transform as follows : 

A,  = m z A ;  Js = m z J  

where A and J are the Laplacian and Jacobian 
on the plane. Thus (8) is transformed into 

7 = h A  z +f J 
with 

The mapping used for the numerical inte- 
grations was the stereographic projection of 
the earth's surface onto a plane tangent at the 
north pole. In this case we have the following 
relation between the geographical latitude p 
and the distance Y from the pole on the map: 

cos p 
I i- sinrp' 

Y =  

where the radius of the equator on the map 
is chosen as the unit of distance. We  obtain 

where 0 is the earth's angular speed of rotation. 
With the notation 

[ = A z  

5 Electrnriic Ntrttierical Integrator arid Comyiiter, 
Ballistic Research Laboratories. Aberdecn l'rovincr 
Ground, Maryland. 

the system (13) is replaced by 

Since it is immaterial what values are 
assigned to z and dz on the boundary, as 
long as it is sufficiently far removed from the 
forecast region, we may prescribe the condi- 
tions 

32 
at  

= 0, - 

at - = o for zI, 20, 
3 t 

where zta is the tangential derivative of z 
taken in the direction that has the interior 
of the region on the left. 

For simplicity a rectangular area with sides 
L, and L, is chosen, and a rectangular grid of 

points is defined by the co-ordinates x = - i, Lx 
Y 

y = L ' j ( i = o ,  I, ...) p ; j = o ,  I, . . . )  4)  
4 

with boundary lines i = 0, i = p and j = 0, 

j = 4. The grid intervals - and 2 are taken 

to be equal to the common value A s. 

L, L 
P 4 

The quantities h and f are independent of t 
and may be determined once and for all from 
(IS) and 

YZ = (x-xp)z + ( y - y p ) z  

where x p  and y p  are the co-ordinates of the pole. 
Using centered space differences and de- 

noting"by the subicript i j  the value of a 
quantity at the point ( i , j ) ,  we derive the finite 

" difference analogue of (16), 
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whcrc 

The solution of (18) for the boundary con- 
dition 

r5)oj= (%)lo= (z)i'I = O ;  

( i =  0, I , .  . ., y ; j =  0, I,. . . q) (19) 

is then givcii cxplicitly by 

z l r  , n t i i s .  z l i .  nrtij 
siii -- sin ~ siii -- sin __ 

Y q lJ I (20)  

at 
J t  

The boundary values of - require special 

attention. Here we make use of the second 
condition in (17): if fluid is entering the rect- 

J t  J t  aiiglc, we set - = 0; if fluid is leaving, - is 
at at 

determined by the interior values of 7 and z. 
In the latter case we shall agrec to extrapolate 

3 linearly from the interior. This leads to the 
0 t 
following scheme : 
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Thc corner points arc exceptional, but as they 
are not required in the computation they need 
not be Considered. 

Having determined (”)ii and (2) from 
,at  d t  ij 

(18) and (20) we perform the time extra- 
polation by means of the formulas 

except at the first step where uncentered time 
differences must be used. The entire process is 
repeated It tinics if a forecast is desired for the 
time tz A t .  

V. The Computational Stability of the 
Finite Difference Equations 

It the finite difference solution is to approxi- 
mate closely the continuous solution, AS and 
At must be small in comparison to the space 
and time scales of the physically relevant 
motions. But this does not alone insure 
accuracy ; the small-scale motions for which 
there is inevitably a large. distortion may 
possibly be amplified in the course of com- 
putation to such an extent that they will 
totally obscure the significant large-scale 
motions. In the following we shall derive the 
criteria which insure that no such amplifica- 
tion will take place. We  shall employ a 
heuristic procedure which is, however, pat- 
terned after the rigorous method of COURANT, 
FRIEDRICHS, and LEWY (1928). 

Since we arc concerned with the behavior 
of small-scale, high-frequency perturbations, 
we may linearize the vorticity equation and 
assume the coefficients to be constant in a 
region which, though small, is yet sufficiently 
large to contain several of the small perturba- 
tions. If z’ denotes a small perturbation su- 
perimposed on a smooth large-scale motion, 
the vorticity equation may be written 

n 
3t 
- ( A  z’) = J ( ? I ,  2’) -I- rq ( A  2, 2) + 

+- J ( h ,  z )  A 2’ (22) 

and we have to consider thc computational 
stability of its finite differeiicc analogue: 

(32 A,.+ * z’- A,, - 1  z 
- h - (  dS 2 A s  ----’) +I (h,  z )  A ii z‘, 

in which the coefficients of the terms in z’ 
may be considered constant. If, as before, the 
boundary is rectangular, the perturbation may 
be expanded into a finite Fourier series and 
it is enough to take an individual harmonic of 
the form 

z’ = ci (ks T I < ] ,  1 8 0 ,  

where 

nrn .T 111 
= - (111 = I, 2 .  . . .) q-- I),  iu= __ q a s L,, 

1’ is the frequency, which may be complex, and 
L, and L, are the ?c and y dimensions of the 
grid rectangle. Substitution into (23) then 
gives, after some manipulation of terms, 

W - W - ‘  

2 
= n i +- J (h ,  2) at, 

Clearly the disturbance will not amplify 
if I w I  I .  To investigate the conditions 
under which this is so, let us first consider ( 2 5 )  
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without the term (h ,  z )  LJ t. Put wo, a root of 
this equation, equal to @, where Q is positive 
and 0 real. IwoI = Q I I is required for sta- 
bility. Since -m0-1 = - @ --I t-~@ is a root 
along with wo, Q 2 I is also required. Hence 
Q = I ,  wo = t'(9 , and 

2 i sin 0, w o  - w o - ~  = ctC) - c-i'-) = 

and the stability condition becomes 

j a  j = isin 0 I <I. (28) 

To  find an upper bound for I a I we consider 
separately the two ternis in (27). The absolute 
value of the first is bounded by 

The second increases indefinitely in numerical 
value with diminishing k and $1, but it must 
be recalled that 

-x 111 ,z 
r" = L, 2 L,. 

Since k AS is small, we may approximate the 
sine terms in the numerator and denominator 
by their arguments to obtain the upper bound 

where 

Hence the condition 1 
stability criterion 

j 2 I leads to the 

(29) 

Consider now the effect of the term 
J (h ,  z) ~t in equation (25). This equation 
'(inco) has no multiple roots except at a = f I. 
If this is excluded, that is, if the stability 
condition is strengthened to 1 (I I < I, then 
the extra term in question mill merely cause 

a change in w of the order ~ t .  Ovcr a 
time t, that is, over t i  A t steps, this will lead 
to an accuinulation of errors which does 
not increase indefinitely for At approac!iing 
zero. That is, this does not cause an amplika- 
tion of error that can vitiate the convergencc 
of an approximate solution to the true solu- 
tion for ~t approaching zero. Thus, at most 
an irrelevant modification of the stability 
Criterion may be called for; the exclusion of 
thc equality sign in the inequality that de- 
fines a lower bound for n s !  At.  

Because of the extrcnic approxiniativc 
character of the derivation of (29) this stability 
criterion can be regarded only as a rough 
directive in the selection of AS and ~ r .  In  
addition, the second parenthetical term on 
the right hand side of (29) originates from a 
term in n that is proportional to At and licnce 
is comparable to the term j ( k ,  z )  LJ t whose 
neglect was advocated above. Finally the 
size of the L which enters here is debatable: 
To use the full L (ix., L,, L,,) seeins UII- 

called for, since phenomena on the largest 
possible scale are not aimed at by thcse con- 
siderations. A detailed discussion of these 
factors would take us too far from prin- 
cipal subject. The actunl values used for A X  
and at were clmen on the basis of a coin- 
bination of the above principles and general 
physical considerations and were ultimately 
justified when the computation was found to  
be stable. 

VI. Presentation and Analysis of Results 

The forecasts were computed for a period 
of 24 hours. The time interval used was at 
first one hour but was increased to two and 
then three hours when it was found that the 
larger intervals gave practically identical 
forecasts and did not lead to computational 
instability. The space interval As was taken 
to be 736 km, or 8 degrees of longitude at 
45 degrees latitude on the map, and the grid 
rectangle consisted of 15 x 18 space intervals. 
An actual grid is shown in figure I .  

It will be seen that the distances are so great 
that good resolution cannot be expected for 
any but the largest scale motions. Unfortun- 
ately a smaller interval would too greatly 
have reduced the size of the forecast area, for 
the total number of grid points was restricted 
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by the limited internal memory capacity of 
the Eniac. It may be of interest to remark that 
the computation time for a 24-hour forecast 
was about 24 hours, that is, we were just able 
to keep pace with the weather. However, much 
of this time was consumed by manual and 
I.B.M. operations, namely by the reading, 
printing, reproducing, sorting, and interfiling 
of punch cards. In the course of the four 
24 hour forecasts about IOO,OOO standard 
I.B.M. punch cards were produced and 
I ,ooo,ooo multiplications and divisions were 
performed. (These figures double if one takes 
account of the preliminary experimentation 
that was carried out.) With a larger capacity 
and higher speed machine, such as is now 
being built at the Institute for Advanced 
Study, the non-arithmetical operations will 
be eliminated and the arithmetical operations 
performed more quickly. It is estimated that 
the total computation time with a grid of 
twice the Eniac-grids density, will be about 
I / *  hour, so that one has reason to hope that 
RICHARDSON’S dream (1922) of advancing the 
computation faster than the weather may soon 
be realized, at least for a two-dimensional 
model. Actually we estimate on the basis of 
the experiences acquired in the course of the 
Eniac calculatons, that if a renewed system- 
atic effort with thc Eniac were to be made, 
and with a thorough routinization of the 
operations, a 24-hour prediction could be 
made on the Eniac in as little as 12 hours. 

Insofar as possible, weather situations were 
chosen in which the changes of interest 
occurred over North America or Europe, the 
areas with the best data coverage. I t  must be 
borne in mind, however, that forecasts for the 
western coasts are reduced somewhat in ac- 
curacy by lack of data in the Pacific and 
Atlantic oceans. 

The data were taken from the conventional 
500 mb analyses of the U. S. Weather Bureau 
and were accepted without modification in 
interpolating for the initial values of 2 at the 
grid oints. It was realized that the conven- 

direction than to wind speed and more atten- 
tion to directional smoothness of the height 
contours than to their spacing, but it was 
thought that the more or less random errors 
introduced in this way would be smoothed 
ou t  in the integration. Unhappily this was 

tiona P analyst pays more attention to wind 

Fig. I .  A typical finite-difference grid used in the 
computations. A strip two grid intervals in width at 
the top and side bordcrs and one grid interval in width 

at the lower border is not shown. 

not always so, and it now appears that an 
objective analysis would have been preferable. 

The forecasts were made from the 0300 
GMT 500 mb charts for January 5 ,  30, and 31, 
and February 13, 1949. On  these dates the 
weather systems were of so large an amplitude 
that their development could not have been 
explained by small perturbation theory or 
by simple translation. Each forecast is illustrated 
by four diagrams (fig. 2-5): (a) contains the 
initial height contours in units of 100 ft and 
the initial isolines of absolute vorticity in 
units of 1 /3  x 10-4 sec-1; (b) contains the 
observed height contours and constant absolute 
vorticity lines 24 hours later; in (c) the contours 
of observed height change in hundreds of feet 
are shown as continuous lines and the contours 
of predicted height change as broken lines; 
(d) shows the predicted height contours and 
constant absolute vorticity lines. 

The spurious boundary influences were 
removed, by excluding from the drawings a 
strip adjacent to the boundaries which was 
two grid intervals in width at the west, east, 
and north boundaries, and one grid interval 
in width at the south boundary where the 
influence velocities were smaller. 

The forecast of January 5, in which the 
principal system was an intense cyclone over 
the United States, was uniformly poor. The 
forecast gave much too small a displacement 
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a b 

C d 
Fig. 2 .  Forecast of January 5, 1949, 0300 GMT:  (a) observed z and 71 at I = 0 ;  (b) observed z and 1) 
at f = 24 hours; (c) observed (continuous lines) and computed (brbken lines) q - h o u r  height change; (d) 
coniputed z and 1) at t = 24 hours. The height unit is 100 ft and the unit of vortir i ty is 1,!3 x 10-4 s e c t .  

of the cyclone and also distorted its shape, and 
the predictions of the other motions were 
equally inaccurate. On  the other hand, the 
January 3 0  forecast contained a number of 
good features. The displacement and amplifica- 
tion of the trough over the United States at 
about I I O O  W was well predicted, as was thc 
large scale shifting of the wind from N W  to 
WSW and the increase in pressure over eastern 
Canada. The displacement of the axis of thc 
major trough over the eastern United States 
and Canada was correctly predicted, but thc 
strong circulation that developed at its southcrii 
extremity was not. Proceeding castwards wc 

find that the amplification of the trough over 
the North Sea together with the characteristic 
breakthrough of the northwesterly winds and 
the corresponding destruction over France of 
the eastern nose of thc anticyclone was prc- 
dicted approximately. This is shown by thc 
agreement of the predicted with the observed 
height changes ovcr western Europc. On thc 
next day the forecast was even better; thc 
continucd turning of the northwesterly winds 
over thc North Sca and their extension into 
vxithwestcrn Europc was correctly predicted. 
Thc major discrcpancy was the appearance of a 
sharp anticyclonic r i d g  south of Ncwfound- 
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a b 

C d 

Fig. 3 .  Forccart of January 30 ,  1949, 0300 GMT. (SCC Fig. z for cxplaiiation of diagrams.) 

land, which is also indicated by the excessivc 
observed pressure rises over Newfoundland. 
We  note, however, that the position of the 
center of these rises was correctly predicted. 
On February 1 3  the major changes occurred at 
thc west coast of North America and in the 
Atlantic Ocean and were consequently difficult 
to forecast and to vcrify. Too great considera- 
tion should not be given to thc Atlantic 
forecast, sincc data for this area werc virtually 
non-existent. 

An attempt will now bc made to account 
for the errors in rhe forecasts. Thc success of 
such an attcnipt will, of coursc, dcpend upon 

onc’s ability to separate the computational and 
analysis errors from those which were due to 
defects in the model. This unfortunately will 
not always be possible. Because of the excessive 
size of the space increments, the computational 
errors were in some instances obviously so 
great that nothing definite could be said 
about the residual errors duc to the short- 
comings of thc model. The January 5 forecast 
was a case in point. Here the grid interval was 
not at all small in comparison with the scale 
of thc systems, and one had to cxpect a large 
computational error. This was not equally 
true of thc rcmaining forecasts where the scale 
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Fig. 4.  Forecast o f  January 3 1 ,  1949, 0300 GMT. (See Fig. z. for explanation of dingranis.) 

was in general considerably greater. Errors 
in analysis also contributed to the difficulty in 
interpreting the results of the forecasts. These 
will be minimized as far as possible by confin- 
ing the discussion to areas in which the analysis 
was fairly reliable. Ultimately, however, the 
importance of the analysis errors can be ac- 
curately judged only by making a series of 
forecasts with the same data but with varying 
independent analyses, both subjective and 
objective. In view of the above mentioned 
difficulties the following discussion niust be 
regarded as highly tentative. 

I .  Truncotiorr errors. (Errors dire to thc rc- 
ploccwcwt ?f thc (strict] difliwrztiol quatiori b y  oiz 

[opproxirrroizt] diflerciicc cyiotiorz.) - Examples 
of unsystematic errors due to truncation are 
found by comparing the verification map for 
January 3 0  (fig. 3 b) with the synoptically iden- 
tical initial map for January 3 1  (fig. 4 a). The 
difference in position of the grids is reflected 
in differing absolute vorticity patterns. Because 
of the large scale character of the systems the 
discrepancies are on the whole not great. 
Some arc connected with the slight uncertainty 
in the actual drawing of the absolute vorticity 
lines. However, it is seen that there is a large 
discrepancy in the two patterns around the 
low off the west coast of Portugal: on thc 
one map absolute vorticities of greater than 
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Fig. 5 .  Forecast of February 1 3 ,  1949, 0300 GMT. (Sce Fig. z for explanation of diagrams.) 

7 units were measured, whereas on the other 
the grcatest measured absolute vorticity was 
but 4 units. 

According to the basic assumption under- 
lJ-ing the computations one should expect to 
find that the absolute vorticities “move with 
tlic fluid”. Merely by inspecting the map for 
January 5 it becomes clear that it is impossible 
to account for some of the major changes in 
the pattern of absolute vorticity around the 
low over the United States from the advection 
of absolute vorticity. Truncation errors have 
hcre to a large extent influenced the results and 
are probably the main reason for the strange 
computed deformation of this low. 

The assumption of the conservation of 
absolute vorticity requires in particular that 
the extreme values of the absolute vorticity 
remain unchanged. An inspection of the 
individual minima brings out the fact that 
nearly all of them intensified during the 
computation (a similar computational error 
did not occur for the maxima). These dis- 
crepancies account for some of the main errors 
in the forecast. Thus on January 3 1  the maxi- 
mum height increase, which is found over 
Newfoundland, was about 600 ft. too great 
but corresponding to this there was a rather 
large decrease in absolute vorticity that cannot 
possibly be accounted for by advection. A 
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similar fictitious decrcasc of vorticity on Feb- 
ruary 13 off the east coast of the United States 
may very likely havc been responsible for the 
exaggerated height increase in the Atlantic. 

A comparison betwceii computed and ob- 
served displaceniciits of well-defined troughs 
and ridges gave thc result that out of 20 
troughs 16 moved too slowly and thc rest with 
about the right spccd, and of 10 ridges 5 
moved too slowly, 3 too fast, aiid 2 about right. 
Thus on thc whole tlie disturbanccs were 
computed to iiiovc too slowly. The dis- 
crepancy is apparciitly not due to truncation 
error since the fiiiitc difference approximation 
does not systematically underestimate the 
wind speed. Nor is the explanation to be 
found in the geostrophic assumption. The 
geostrophic wind is a poor approximation to 
the actual wind in regions where the height 
contours are strongly curved; but the winds 
are overestimated in cyclones aiid under- 
estimated in anticyclones, aiid this is just the 
contrary of what must bc true if the computed 
motions arc to be cxplaincd. A possible 
explanation is given by thc fact already 
mentioned in Section 11 that the level of 
nondivergencc is probably lighcr than 500 mb. 
If this levcl were apprcciably highcr, the speed 
of propagation would increase significantly 
because of the greater speed of thc wind. 

2. Errors dric to i i o r r - f i r l f i l lmc~i z t  of thr vertical 
w i n d  variation assirrirpiori. - The approxi- 
mation (I) that the winds are parallel at all 
heights is admittedly a crude one. An indi- 
cation of how thc motion is modified when 
this assumption is dropped is given by the 
following consideration. 

We  replace (I) by the synoptically morc 
tenable assumption that the isotherms are 
parallel at all heights. In particular, we assumc 
that v may bc written 

- 
v = v T VT, 

wherc V is the mcaii wind, supposed cqual 
to thc actual wind at y = p ,  and vT is the 
thermal wind referred to this level. 

With slight approximation the vertically 
averaged vorticity cquation may bc written6 

(30) 

- 

- n In (Z -j) = 0, 
nt 

6 CIIARNEY (194s) 

or, since .f> 5,  cxcept iicar tlic cciiter of an 
intense cyclone, 

0 r 
-- = - V ' V  77. 
0 t 

- 

(3 1) 

Iiisertiiig thc cxprcssion - (30) aiid noting that 
by definition vT = 0, we obtain 

- 

wherc CT is thc vorticity of the thcrinal xvind. 
If vT were parallcl to v wc should again 

obtain cquation (3), but tlic interesting case is 
where tlic isothermal pattern is out of phase 
with respcct to thc streamliiic pattern. In this 
case thc last term in (32) produces vorticity 
changes which lead to an iiicreasc or dccrcasc 
in tlie total kinetic energy. Iii the special case 
of a symmetric trough with a north-south 
axis, this term gives an incrcasc of c)-clonic 
vorticity along thc axis when thc isotherm 
trough is displaced towards the west. The 
increase of absolute vorticity in the major 
trough near tlic east coast of Canada on January 
30 inay thus bc attributed to a phase lag of tlie 
isotherm pattern which was observed at 
0300 GMT. As this devclopinent was thc 
principal discrepancy in what was otherwise 
a good forecast, an attempt is made at tlie close 
of this article to give a quantitative explana- 
tion in tcrins of a simplified baroclinic model. 

3. Tkc c$&cts of baroclinicity. - Thc most 
typical coiyditions for tlie brcakdown of thc 
barotropic inodel will probably occur whcn 
potential cncrgy is converted into kinetic 
energy. This usually is reflected in the inten- 
sificatioii of the extrema of absolute vorticity 
which, as rcmarked earlier, is inconsistent 
with thc assumption of conservation of 
absolutc vorticity in a horizontal lion-divergciit 
flow. Thcreforc, an inspection of the observed 
changes at thc extreme points in the field of 
q can be expcctcd to give some inforination 
as to what extent the model has applied in 
the prcsent situations. As a further test the 
initial and vcrification maps may be consulted 
to asccrtaiii whether areas enclosed within 
isolines of absolute vorticity were actually coii- 
served, a id  whether such regions if initially 
siinply coiiiicctcd remained so in tlie observed 
developments. The February I 3 forecast offers 

- 
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determining the development of the major 
trough over eastern Canada and the United 
States on January 30 as the trough moved 
into the Atlantic, but on the following day 
the greatest part of the change was accounted 
for by the transport of the absolute vorticity. 

In addition to the independent effects of 
barotropy and baroclinicity there is also the 
problem of their mutual interaction. An 
intrusion of vorticity in one locality, by chang- 
ing the velocity field, automatically changcs 
the conditions for the advection of vorticity 
in thc surroundings. In this sense the addition 
of even small vorticities may be important, 
especially in regions of intense extrenia of 
absolutc vorticity. These regions generally 
possess large amounts of kinetic energy, and 
small changes in the vorticity field may 
produce large changes in the vorticity advcc- 
tion. Thc motion of the intense low over the 
United States on January 5 was possibly an 
cxample of this effect. From an inspection of 
the initial map it is seen that the height contours 
and isolines of absolute vorticity coincided to 
a high degree, whereas on the observed map 
24 hours later the center of absolute vorticity 
was displaced slightly to the south of the center 
of tlic low pressure, thus giving more favorable 
conditions for the displacement of the wholc 
system. Actually it was found from thc 
observed inap for 1500 GMT that the center 
speeded up in the second half of the 24-hour 
period. 

Wc  may add that while baroclinic effects 
may be important in changing the condi- 
tions uiidcr which advection of absolute 
vorticity takes place, barotropic effects may 
distort the mass field and thereby influencc 
tlie conditions under which potential energy 
is converted into kinetic energy. It is not, 
howcver, within the scope of this paper to 
discuss such effects, as little light can be thrown 
upon them by a study of purely barotropic 
processes. 

5 .  S t y p t i o n s  - f i r  the irnprouernerrt sf’ the 
bnrotropic forecasts. - Strictly speaking the 
quasi-barotropic equation that has been used 
applies to the vertically averaged motion of 
the atmosphere. If, therefore, the actual 
motion at the level whose motion most closely 
approximates the mean has superimposed upon 
it other motions that do not appear in the 
vertical average, these motions will not be 

two typical examples of the failure of the model 
in this sense. In thc trough over the east coast 
of the Hudson Bay the maximum absolute 
vorticity was initially between 5 and 6 units 
but became, after 24 hours, closer to 7 units, 
corresponding to the observed, but not 
predicted, intensification of the trough. The 
other example is the trough over the west 
coast of the United States. Here the region 
with the isolines of absolute vorticity labeled 
by 4 was split into two separate regions in the 
observed devclopnient, and this splitting was 
confirmed even more markedly when tlic 
absolute vorticities were recomputed for a 
finer grid. The corresponding destruction of 
vorticity was responsible for the cutting off of 
a closed low which tlic computations failed 
to give. 

4. Enrotropy i~ers~rs  bnrodiriicity. - It should 
be clear that the fact that vorticity may bc 
created or destroyed cannot annihilate the 
physical effects from the horizontal transport 
of vorticity. The problem is to determine the 
relative importancc of these effects in compari- 
son with those resulting from the action of 
forces creating or destroying circulation. The 
following points of view niay be put forth in 
tlie light of the results of the present forecasts. 
Considering first the barotropic effects, it may 
be said that these were seldom if ever negligiblc 
in magnitude compared with the observed 
changes and werc often the predominating 
ones. Moreover the transport of vorticity 
did not contribute merely to the translational 
propagation of systems but also to their de- 
velopment by the dispersion of kinetic energy. 
The forecasts for January 3 0  and January 31 
are illustrations of this point. 

As to the effect of the non-conservation of 
absolute vorticity, the evidence, both from 
the Observed developments and from the 
failure of the forecasts in a number of instances 
where the error could not be attributed to 
the use of finite differences, supports the com- 
monly accepted view that baroclinicity cannot 
be ignored even in day to day changes in the 
upper flow patterns. Even when small, the 
non-barotropic effects inay be responsible for 
important structural changes in the velocity 
field, as for example, in thc cutoff Iow on 
January 13. Howcvcr, this importance is not 
everywhere and at all times the same. Baro- 
clinic cffects were apparently decisive in 
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governed by the equation of mean motion 
and will consequently exert a distorting 
effect on the forecasts. Hence, if it is possible 
in some approximate sense to ascribe to these 
motions a quasi-independent behavior, it 
would seem preferable to forecast the mean 
motions themselves and then to identify the 
mean motions with those at a particular level, 
rather than to operate with the motions for 
this level from the beginning. Thus it is 
suggested that errors due to motions that do 
not satisfy ( I ) ,  as well as analysis errors, may 
be reduced by defining the I* in 

D z* 
d, = J  (g d,z* +f, z*) (33) 3t j .  

instcad of by z at the level p*. 
It is, of course, obvious that the length of 

the space interval should be reduced in future 
forecasts, but care must then be exercised in 
selecting the method of interpolation of the 
grid values. If the interpolation were performed 
subjectively, decreasing the size of the grid 
interval would lead to increasingly large 
errors in the difference quotients because of 
the increasing difficulty in determining small 
differences by subjective estimation. One 
might argue that a very small interval should 
not in any case be used because it would 
exaggerate the noise motions. But the way 
to smooth these motions is not to use a grid 
interval that distorts the large-scale motions; 
the smoothing is much more efficiently and 
exactly accomplished by fitting the data by 
polynomials or other mathematical functions 
which can be chosen in advance to give any 
desired degree of smoothing. A reduction in 
the size of the grid interval would then givc 
more rather than less accuracy in approxi- 
mating a derivative by a finite difference 
quotient. 

6. A simplified baroclinic model. - In an 
effort to assess the relative importance of pure 
advection of absolute vorticity as against the 
circulation producing forces of the atmosphere, 
the following baroclinic model has been 
adopted because of its simplicity and adapta- 
bility to numerical analysis. It is also put 

forward as the next in a hierarchy of models 
whose study is expected to lead to a better 
understanding of the atmospheric motions. 
The essential simplification has been brought 
about by the geostrophic assumption and 
the assumption of horizontal advection of 
potential temperature. As it turns out, the 
reasoning is much in accord with that of 

If pressure is adopted as a vertical co- 
ordinate, the hydrostatic equation may be 
writtcii 

SUTCLIFFE (1947, 1950). 

from which one derives 

(3 5) 

where B is the potential temperature. Integra- 
tion from pO, thc pressurc at the ground, to 
an arbitrary lcvcl p and application of the 
surface spherical Laplaciaii operator to both 
sides of the resulting equation then gives 

where the subscript o denotes a surface value, 
and 

1'0 

Taking the vertical pressure average we get 

- 

The ternis A ,  ( $ ) o  and A ,  ($) may now be 

eliminated between (37), (38), and (31) in 
the form 

to givc 
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Fig. 6. Barotropically and baroclinically computed 
500 mb height tendencies at 0300 GMT, January 30, 
1949. The barotropic tendencies are represented by 
coutinuous lines and the baroclinic tendencies by broken 

lines. The unit is IOO ft/24 hours. 

The advective hypothesis is finally introduced 
by ignoring w in the approximate adiabatic 
equation 

and substituting the resultant expression for 
2 In $/at in A. 

Equation (40) is then seen to be a generaliza- 
tion of the quasi-barotropic equation (3), for 
if the assumption (I) is made, streamlines and 
isolines are everywhere parallel, and A = A 
at the level i. It also can be shown to reduce 
to (32) under the assumption (30). Its solution 
is obtained as before by solving a Poisson's 
equation in two dimensions. 

Equation (40) has been applied to the com- 
putation of the initial height tendency for the 
January 3 0  situation as a means of explaining 
the major discrepancy in the barotropic 
forecast for that date. The vertical integrations 
needed for evaluating 5 (7, z), and A were 
based on data obtained from the 1000, 850, 
700, 500, 300, 200, and 100 mb charts. 

It was to be expected that the advective 
hypothesis would be found untenable in the 
stratosphere because of the great statical sta- 
bility there. Indeed, it turned out that the 
tendencies were greatly improved by ignoring 
17-005 140 

Fig. 7. The broken lines represent the z4-hour height 
change computed by translating the baroclinically com- 
puted tendency field shown in Figure 6 in the direction 
of the mean current and with the speed of the trough. 
The solid lines represent the observed z4-hour height 

change. 

entirely the local potential temperature changes 
in the stratosphere, i.e., by assuming that the 
change in potential temperature due to hori- 
zontal advection is exactly compensated by 
its vertical transport. On this basis the initial 
height tendencies were calculated for all levels 
up to 300 mb for a region containing the 
trough at the east coast of Canada and United 
States. The 500 mb tendencies are shown in 
fig. 6 together with the computed initial 
tendencies obtained from the barotropic 
model. The units are in hundreds of feet per 
24 hours. It is immediately apparent that the 
baroclinically calculated height falls on the 
east side of the trough are more favorable, 
both with respect to intensity and position, 
for the observed development. In order to 
obtain a more direct comparison with obser- 
vation, the computed baroclinic tendency 
field was translated for 24 hours with the past 
speed of the trough in the direction of the 
mean current. The resulting 24-hour height 
change, together with the observed height 
change, is shown in fig. 7. It is seen from 
the diagram that the correspondence is close 
and by comparison with fig. 3 is much 
better than the barotropically computed 
change. 

It may also be mentioned that the computed 
baroclinic tendencies for the 1000 mb level 



254 J. G. CHAKNEY, R. FJORTOFT, J. V O N  NEUMANN 

corresponded reasonably well with the ob- 
served tendencies on the sea-level map. The 
pressure falls to the northeast of a well de- 
veloped surface cyclone were, if anything, 
somewhat too great. An effort is now being 
made to see whether the effect of vertical 
motions is to reduce the falls. Some preliminary 
calculations indicate that this is the case. 
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