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PREFACE

This symposium was conducted under the terms of a contract between the
Meteorology Division of the National Air Pollution Control Administration
{(NAPCA) and the Department of Environmental Sciences and Engineering,
School of Public Health, University of North Carolina at Chapel Hilt (UNC).
The contract officer for the sponsor was Mr. Lawrence E. Niemeyer, As-
sistant Director, Division of Meteorology, NAPCA. The responsible officer
for the University was Arthur C. Stern, Professor of Air Hygiene. The sym-
posium was held from October 27 to 30, 1969, at the Carolina Inn on the
University campus. On December 4, 1970, the functions of NAPCA were
transferred to the Air Pollution Control Office (APCO) of the Environmental
Protection Agency. All references to the former, therefore, now refer to the
latter.

Although UNC was the contractor, it was agreed that the symposium would
be sponsored by the North Carolina Consortium on Air Pollution, com-
prising: Duke University; North Carolina State University; the Office of Man-
power Development, NAPCA; Research Triangle Institute; and the University
of North Carolina at Chapel Hill. The detailed planning for the symposium
was done by a steering committee representing the members of the Con-
sortium and the contract officer.

All the papers, both invited and volunteered, that were presented during the
symposium, are included in this volume. In addition to the invited partici-
pants, some attendees were selected from persons who responded to the
public announcement of the symposium. Almost all papers were preprinted
and distributed to participants in advance of the meeting. Although there
was open discussion after every presentation except the Keynote and Ban-
quet speeches, the only discussions incorporated in the Proceedings are those
subsequently submitted in writing.

Questions from the floor and authors’ responses do not appear unless those
same questions and answers were also included in the written discussion.
Every author questioned was given an opportunity to submit a rebuttal. The
nature of such an arrangement made it necessary, for the sake of coherence,
to incorporate all discussion in a separate chapter, divided into two sections:
speaker-directed discussions and discussions submitted by the participants.



Particular thanks are given to the graduate students in Air Pollution in my
department at UNC, who acted as floor monitors during the symposium —
particularly to Harvey Jeffries and Douglas McKay, who managed the audio-
visual arrangements throughout the symposium. The registration of partici-
pants and the preparation of the symposium program and information kits
were ably handled by the Continuing Education Department of the School
of Public Health, UNC. | am especially appreciative of the excellent services
of my secretary, Martha Davis, for her help in the preparation and conduct
of the symposium and in the coordination of these proceedings.

Arthur C. Stern
Chapel Hill, N, C.
November 1970.
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9. TIME — SPACE MODEL FOR SO,

ABSTRACT

A multiple-source diffusion model for the simulation and prediction of
long-term (climatological) ground-level sulfur dioxide concentrations in
urban areas is described. The computer input consists of data from an
emission source inventory together with statistics on relevant diffusion
parameters.

Because of the capacity of available computers, only a limited number
of the largest emission sources (approximately 150} can be treated
individually. Smaller industrial emission sources are treated as residen-
tial sources. These are represented by a large number of stacks (about
150} of the same dimensions, distributed over areas of 1 square
kilometer, for which the mean area emissions have been estimated.

The meteorological input consists of data on wind direction, wind-
speed, and Pasquill-Turner stability classes.'- ? These parameters are
assumed to be spatially homogeneous throughout the metropolitan
area. Low-level emissions (residential] are correlated with low-level
windspeeds and Pasquill-Gifford diffusion parameters,'-® whereas high-
level emissions (industrial) are correlated with extrapolated windspeeds
and Brookhaven diffusion parameters® The program also uses corres-
ponding statistics for urban boundary layer depths and values for
parameters affecting absorption at the earth’s surface.

The diffusion model used is basically Gaussian. It is modified, however,
such that turbulent diffusion is restricted exclusively to the depth of
the urban boundary layer. This is true for all sources having effective
emission heights less than the height of the upper limit of the bound-
ary layer. The rate of decay of sulfur dioxide is taken into account, as
well as the experimentally determined absorption at the earth’s surface.

The model calculates fields of steady-state ground-level concentrations
that correspond to a given spatial distribution of emission sources and
to any possible combination of relevant meteorological diffusion para-
meters. Knowledge of frequency distributions of these meteorological
diffusion parameters permits the derivation of frequency distributions
of ground-level concentrations for any location within or outside of
the metropolitan area. The computerized experiments simulate fre-
quency distributions of ground-level concentrations for a great number
of regularly arranged grid points (up to 2500 with a mesh size of 500
by 500 meters) and for a variety of time periods (months, heating



period, seasons, year, etc.). The frequency distributions are charae.
terized by a limited number of parameters (mean, percentiles, ex),
Each parameter is plotted as a system of isograms on a map of the
metropolitan area.

Experiments to validate the model were conducted during the heating
period in 1967-68 at four continuously monitoring stations that had
been installed at special Jocations within the limits of the metropolitan
area of Bremen. During the sampling period, the assumption of 3
sufficiently homogeneous wind field was validated by wind measure.
ments at the same locations. The calculated frequency distributions of
half-hourly mean values of concentrations generally agreed fairly well
with those derived from observed values. Comparison, however, shows
that the model does not simulate ground-level concentration fields in
the vicinity of industrialized areas very well, because uncontrollable
low-level emissions from industrial plants could not be taken into
account in the diffusion model.

AUTHOR

HEINZ G. FORTAK is a professor of meteorology and Director of the Institute
for Theoretical Meteorology at the Free University of Berlin. His scientific
interests include: general hydrodynamics, turbulence, dynamic meteorology, and
oceanography.



9. NUMERICAL SIMULATION
OF TEMPORAL AND SPATIAL DISTRIBUTIONS

OF URBAN AIR POLLUTION CONCENTRATION

HEINZ G. FORTAK

Institut fur Theoretische Meteorologie
der Freien Universitat Berlin

INTRODUCTION

Increasing industrialization in Germany during the 1950's led to great in-
terest in the problem of ascertaining minimum stack heights essential to
pollution control. In line, therefore, with its responsibilities in developing air
pollution standards and criteria, the Kommission Reinhaltung der Luft{Air
Pollution Control Commision] within the Assoclation of German Engineers
[Verein Deutscher Ingenieure(VDI)] established a research group on air
pollution meteoralogy in 1958. The group was expected to develop the
scientific basis for an approximate solution to the problem, The results of
research during the first period, based mainly on the work of Sutton,® led to
a simple nomogram for estimating minimum stack heights.®. 7 The nomo-
gram is widely used for legal and administrative purposes, although, among
other shortcomings, very little is known about one of the most important
input parameters of the model and therefore of the nomogram. This para-
meter (in German, /mmissions-Grundbelastung) characterizes the temporal
and spatial distributions (air loadings with time) of ground-level concentra-
tions of pollutants in the area in which the newly built stack is located. In
most cases the location is in an urban area already possessing a great number
of emission sources. It is extremely difficult to define such a measure. A
simple number constant in space and time, as proposed by the VDi,” will
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not suffice for urban areas. Instead, such a parameter is dependent oy
horizontal space coordinates and, ultimately, on time (e.g., season),

In view of the crucial dependence of minimum stack heights on this parg.
meter, some means of predicting ground-level concentrations in urban aress
must be found before the stack-height probilem can be solved,

Based on the work of Frenkiel,® the multiple-source urban diffusion model
being described in this paper was developed by the author in 1962, It wag
hoped that this model would be able to solve problems of the kind mentioneg
above. After financial support for programming and computing time became
available, a number of simulation experiments were conducted from 1963
through 1965. A tentative report was published early in 1966.° During that
time the first papers on urban air pollution modeling by Turner? and
Clarke,’® although they aimed at the solution of the real-time prediction
problem, were of great help. Especially, the replacement of Pasquill’s stabi-
lity categories’ by Turner’s® proved to be quite useful.

The purpose of the diffusion model is perhaps understood best by a discus-
sion of Figure 9-1, which shows the logical structure of some features of the
urban air pollution problem. Assuming that sufficient input data are avail-
able, a mathematical multiple-source urban air pollution model should yield
a set of output data such as that indicated in Figure 9-1.

The most important of these data certainly is a real time short-term predic-
tion of concentrations for the entire urban area. Most authors in the field of
urban air pollution modeling were interested primarily in that problem,
Following Turner,® they applied the well known steady-state theory of
transport and dilution to simulate and predict time series of concentrations.
Quite recently, Marsh and Withers'! demonstrated the inadequacy of such a
procedure. The model of Davidson'? that applies a non-steady-state theory
should provide a means of solving the short-term prediction problem,as well
as the problem of time series simulation, more successfully. If this turns out
to be true, the very important feedback circuit, ““warning system,’’ can be
closed; i.e., appropriate control measures can be applied to the source
emission input in order to reduce the predicted concentrations below a given
limit.

The problem of minimum stack heights and, more generally, that of city
planning is connected with the problem of simulation and prediction of
long-term (climatological) ground-level concentration fields. Here, time series
of concentrations are of minor interest; instead, statistics of observed or
calculated concentration fields for given long periods of time are important.

There is no doubt that for a given location and a given period of time only
the frequency distribution of ground-level concentrations forms the basis of
what could be called *“air pollution climatology.” Generally, these frequency
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Figure 9-1. Major elements of the urban air pollution problem connected with mathematical modelling.



distributions vary from location to location within the urban area and with
time and season. Figure 9-2 shows a typical example of the frequency
distribution in winter of measured half-hourly mean values of sulfur dioxide
concentrations in Bremen.
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Figure 9-2. Winter time frequency distribution of measured
half-hourly mean values of sulphur dioxide concentrations
downtown Bremen.

Although it is not believed that a calculated steady-state field of concentra-
tion will fit observations at many locations within the urban area very well,
it can be expected that statistical evaluation of a great number of such fields
may lead to reasonable results in a climatological sense. This expectation
forms the basis for this paper. If the expectation is justified, the feedback
circuit, “minimum stack heights, city planning,” can be closed and, in

addition, means for the strategic planning of observation sites will then be
available.

The following information is used in calculating pollutant concentrations:
period of time (month, heating period, seasons, year, etc.) divided into equal
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intervals (for example, hours); data from source emission inventories; rele-
vant meteorological parameters, etc. From these data the model then calcula-
tes possible steady-state ground-level concentrations for each interval of time
and for a large number of grid points within the urban area. From the stored
concentration data, the frequency distribution of concentrations is obtained
for each grid point. If the frequency distribution is characterized by a set of
parameters (mean percentiles, etc.), these parameters are piotted as a system
of isograms on a map of the urban area. Such maps then may be used to
define the Immissions-Grundbelastung (ground-level concentrations), to solve
problems of city planning as well as problems of strategic planning obser-
vation sites.

From the very beginning the main concern of the investigation was to apply
the model to a real situation and to validate the model by suitable measure-
ments. For several reasons the city of Bremen was chosen for the first
mathematical experiments. Local authorities of the city of Bremen were
willing and able (in 1963) to collect information on source emissions, which
led to a very complete source emission inventory. The location of the city,
on flat terrain and only 40 miles from the North Sea, is favorable in many
respects: the city is well ventilated throughout the year and, in addition, the
relevant meteorological fields are approximately homogeneous horizontally.
In addition, advection of pollutants from other regions can be negiected. The
input data, therefore, were well defined and relatively simple and allowed
the application of a simple model.

MATHEMATICAL MODEL

The steady-state theory of the transport and dilution of pollutants is based
on a number of simplifying assumptions: the relevant meteorological fields
are stationary and are horizontally homogeneous; dispersion is not limited in
the vertical direction; mean windspeed exceeds a certain lower limit; and the
earth’s surface is flat and not absorbing. The well-known formula for the
spatial distribution of a pollutant® then is:

o[ 2] (B[]
X = g exely] 20,° 20,° 1, 20,
21 oy 2n o, 27 0,

As usual, h = hy + Ah is effective stack height, 7 = x/U is travel time, and
T = 1/v is decay time.

(1)

Assuming that the plume standard deviations, oy and ¢, are functions of
travel time, 7, it can be shown that Equation (1) is a solution of the
following! 3 initial-value and boundary-value problem:

_ax _ d (7'y,2 BZX d 0'22 BZX (2)
or a(—zf o Ta\2 e T
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7 — oo X—>0 (5)

The initial condition, that is, Equation (3), expresses the fact that a point
source of strength, Q, is located at the effective stack height, h, The
boundary conditions show that there is reflection of the pollutant at the
earth’s surface and further that dispersion is not limited in the vertical

direction.

It may be noted that Equation (1) has the character of Green’s function in
the special boundary-value problem, Equations (2), (4), and (5). It seems
legitimate, therefore, to apply Equation (2) to problems connected with
boundary conditions different from those described by Equations (4) and ()
Two important assumptions are in question; that of a non-absorbing ground
and that of unlimited vertical dispersion. Denoting by H the height of a
ceiling restricting dispersion to a limited layer of the lower atmosphere
(urban boundary layer), and denoting by a(7 y)the absorption coefficient of
the ground, the boundary conditions, Equations (4) and (5), can be replaced

by:
_ o d a,2\ 0y _
Z =0 : ar <2 > by alr,y)x (6)
Z = H: % =0 7

Even if absorption is not a function of location, only mathematical, rather
than experimental, methods are suitable for solving Equation (2) together
with Equations (3), (6), and (7).'* In view of the uncertainties connected
with absorption at the ground, and with the functional behavior of plume
standard deviations for such cases, only experimental calculations were per-
formed with boundary-condition Equation (6).

Important for practical applications, however, is the assumption that disper-
sion is confined only to the urban boundary layer; i.e., the utilization of
boundary condition Equation (7) for the upper ceiling of the layer (Figure
9-3).

Standard methods' *™'7 allow the derivation of a modified version of Eg-
uation (1) so that it now describes dispersion in a boundary layer of depth H:
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Figure 9-3. Model assumptions.
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> 2
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/n: —00

is a Jacobian theta-function.

It can be shown that Equation (8) differs only slightly from Equation (1)
for H > 3h. If, however, the ceiling approaches the effective stack height,
i.e., if H= h, then the ground-level concentration increases drastically.

So far only a single source has been considered. In an urban area, a large
number of such sources exist. In reality, all of them are point sources as far
as emissions are concerned. They may be divided into three groups. Group 1
consists of all industrial stacks, including those of power stations and
gasworks; Group 2 consists of stacks of small industries, contributing, say,
less than 0.02 percent each to the total output into the city; Group 3
consists of all domestic sources burning fuel for space heating.

Industrial emission sources of Group 1 are treated individually by applying
Equation (8). Since they are irregularly distributed over the urban area and
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since Equation (8) applies to a source-oriented coordinate system, the trans.
formation of coordinates shown in Figure 9-4 is performed.

]

e=icosB +jsinB

= X

/ x+ytan B

Figure 8-4. Transformation of coordinates from a source-
oriented system to a geographically fixed system.

If a denotes wind direction (8 = 37/2 — a) , P(x,y) a receptor point, and
{¢,.mn) the location of a point source, then the individual source distance in
wind direction, X, , and the individual crosswind distance, Y,, of the

receptor point, p(x,y), are given by:

Xn = ew = (x—£,)cosB+(Y—n,)sing {9)
Y, = kley)=- (x~En) sin B+ (Y—n,) cos B

where
vy o= ilx=En) + j(Y-n,)
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Now, source strength, wind speed, travel time, plume standard deviations,
and effective stack height are dependent on (£,1,) and (in, 7 ) , respec-
tively. individual source strength is denoted by Q = Q(¢,.n,) = Q, Wind
speed relevant for transport and dilution of pollutants originating from the
source at {£,,m,) is given by U = U(g,,n,) . Travel time is indicated by 7,

X,/Un, plume standard deviations by o, = gy (1,) = 0y, and 0, =
o,ty) = 0zn, and local effective stack by h = h{f,m,) = hy, +
Ahl¢,.ma)  Introducing these new parameters and coordinates into Equation
{8), the ground-level concentration originating from emission source “n,” i.e.,
Xn(x,y,2) , is obtained.

The concentration fields from all individual sources can be superimposed.
Contributions to the concentration at receptor point, P, come from all
upwind sources having coordinates, £, < x +vy tanf, n, <y + x/tan 5. If
N denotes the total number of upwind sources, the concentration P is given

by:
(10)

1 il: _ 5. 2 7 2 2
X = E{, 82 eXD[—’YTn] ' 20y,n ;63 (hn Z;Uzr)*®3(hn+2;02’n)z
n

=1 V2n oy, 2H 2H3 2H 2H?

It is obvious that computing time goes up tremendously with an increasing num-
ber of individual sources. It is impossible, therefore, to treat all domestic sources
of Group 3 individually. In this context one generally taiks about area sources.
The source strength, Q, is replaced by a local source strength density (source
emission per unit area), q(§n). Local relevant mean wind speed, U{£ 7), as
well as local plume rise, Ah(é‘n), are connected with the emission height
h(¢n) of tthe area source. The coordinates, Yn ,Vn, with respect to an
individual source are replaced by ;,? which obey the same relations, in
Equation (9), as in and Vn do. If the sum in Equation (10) is replaced by
an integral, the contribution of all upwind area sources to the concentration

at receptor point, P, is given by:
(11)

=2
dE J/.dn [ Y
X = §1ﬁ S[+ tanf 0 <y+x/tan 8 %exp[—’)’ﬂ P 20y (7)
" X an =
viang msy " V21 oy(7)

higm -2 o2(F) (h(z,n)+z 02 (7)
®3 _— + ®3 _—,
2H 2H? 2H 2H?

Superposition of concentrations, in Equations (10) and (11), gives the
steady-state concentration field at any location in space, (X,Y,Z), if indivi-
dual point sources as well as area sources act together in that urban area.
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Apart from the fact that source emission data for area sources, i.e., alén)
are not available, the analytical integration of Equation (11) cannot be
performed. Numerical integration replaces the integral by a sum which
represents the area source by a dense, regularly spaced system of point
sources having source strength, g{&;,.m}AEAn. This, in fact, has been done in
the model. The selection of the area element, AfAn, depends upon resoly-
tion and scale. In addition, the characteristics of dispersion as well as the
conditions of emission (emission heights) are important. In order to find a
satisfactory answer to that question, a number of mathematical experiments
was performed. An area source, 500 m by 500 m was represented by a
successively increasing number of point sources (Figure 9-5).

°
°
o 9 0 o6 o o
e 8 o o
5 o o o
° °
° [
s ° 8 o @ o o
o

errese st vanenaer
AB gt ne s e mantrn

Figure 9-5. Simulation of an area source by the use of increasing
number of point sources distributed regularly over an area 500 x
500 meters.

As Figures 9-6 and 9-7 show, an area size of A = AfAn =56 m x 56 m
should be sufficient for the representation of an area source by a great
number of point sources under the conditions indicated in Figures 9-6 and
9-7.

In order to get the same degree of approximation for a wide range of
windspeeds and stability categories, the 500 m by 500 m area source must
be represented by at least 100 individual sources (A = AkAn = 50 m x 50
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m) or better, by 144 individual sources (A=A(An =~ 42 m x 42 m). This
corresponds roughly to the mean distance between individual stacks from
space heating units,
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Figure 9-6. Successive approximation of area-source emissions
under unstable conditions by the use of an increasing number of
point sources. (Relative crosswind SO concentration profiles
taken at Xpmax distance from center of area. Uniform emission
height is 25 meters; stability class, 2; wind speed, 3 meters per
second.)
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second.)

9-12



METEOROLOGICAL DATA INPUT

A set of meteorological data consists of windspeed, wind direction {both
taken at anemometer level), and stability category. All three are hourly
values taken at the Bremen airport. Observations of windspeed and wind
direction at four sites in the city during winter (1967-68) validated the
assumption that the airport observations are representative for the urban area
of Bremen, at least during winter, which is the most important period with
respect to air pollution in Bremen. Stability categories were computed using
Turner’s scheme.?

It was discovered during simulation experiments that 36 wind direction
measurements (wind roses divided into 10-degree intervals}) are necessary to
provide reasonable ground-level concentration fields. Windspeed was divided
into seven classes. Inciuding five stability categories, a total number of 1260
combinations exist, of which, however, only about 600 are realized.

Frequency distributions of wind data were calculated for each stability
category for a variety of periods {months of the year, seasons, years, and
five to ten vyears). Figure 9-8 shows a typical example of a long-term
distribution.

Data on plume standard deviations for urban areas were not available during
the years of experimentation. Therefore, the well-known Pasquill-Gifford
values' ¥ were used for low emission heights (space heating), whereas the
Brookhaven values ** 1% were applied in a slightly modified version to high
industrial stacks (Figures 9-9 and 9-10). The results of the St. Louis disper-
sion study indicate that utilization of those values given in Figures 9-9 and
9-10 inevitably lead to a systematic overestimation of ground-level concentra-
tions.!® This trend was, in fact, apparent when the results of calculations
were compared with those obtained by observations.

Finally, the problem of mean windspeed, U, which is relevant for the
transport ‘and dilution of pollutants, was solved in the usual manner. Wind
observations were extrapolated from anemometer level to physical stack
height for each stack by means of a power-law-profile assumption. This
extrapolation was assumed to be a function of stability and was made by the
use of parameters taken from the literature (Figures 9-8, 9-9, and 9-10).

EMISSION SOURCE INVENTORY

All emission sources, as mentioned earlier, were classified in three groups. All
individual stacks (Group 1) with emission rates greater than 1 kilogram



Figure 9-8. Frequency distribution of wind direction and wind-
speed for Bremen, 1954 to 1959. Stability class: 4 (neutral).
Isopleth numbers represent hours per period.

sulfur dioxide (SO,) per hour were treated individually. The record con-
tained: geographical location, physical dimensions of the stack, output by
volume, exit velocity, exit temperature, and, finally, emission data that
included maximum emissions and mean winter and summer emissions. In
addition, data were obtained whenever possible on daily variations in emis
sions and emissions during holidays.

Effective stack heights were calculated by applying Stumke’s empirical for-
mula,”? similar to the well-known CONCAWE-formula, which is applicable to
all types of stacks in Bremen.

Group 1 emission sources, consisting of 136 stacks, contributed 75 percent
to the total emission rate in Bremen during winter 1965 {Table 9-1). Spatial
distribution per square kilometer is given in Figure 9-11 for these sources.
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Figure 9-9. Crosswind-plume standard deviations.
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Figure 9-10. Vertical-plume standard deviations.
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Figure 9-11. Spatial distribution of mean winter time industrial
emissions.

Table 9-1. STATISTICS FROM 1965 EMISSION-SOURCE INVENTORY
OF BREMEN
Total emissions, Percent of total
Number of kg SO, hr! emissions
Source stacks Summer Winter Summer Winter
Industries and power plants 136 1,423 4,715 99 75
Smait industries 425 46 116 1 2
Space heating — — 1,458 — 23
Total 561 3,469 6,289 100 100
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A large number of individual stacks from small industries contributed less
than 0.02 percent each to the total emission rate, i.e., less than 1 kilogram
S0, per hour. They contributed only T to 2 percent altogether and,
therefore, were not treated individually. Instead, the same technique was
used as that applied to emissions from space heating (Figure 9-12).
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Figure 9-12. Spatial distribution of mean winter time industrial
emissions from small industries.

Although it contributed less than 25 percent to the total emission rate, space
heating is the dominant factor in air pollution in Bremen because of low
emission heights.

Emissions from space heating were obtained in the following way. The
spatial distribution of dwelling units in Bremen, which number about
200,000 was known very well, Further, the total amount of coal and fuel oil
consumption during heating periods was known. From the sulfur content of
the fuels, the total fuel consumption, and the total number of dwelling
units, a mean emission rate of 8 grams SO, per hour per dwelling unit was
obtained. This is the amount that would have been emitted daily during the
heating period if the daily mean temperature had remained constant. In
several experiments, a relationship between daily mean temperature and daily
emission was used to make emissions from space heating a function of time.
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A mean emission height of 25 meters was assumed for downtown emissions
and 15 meters for suburban emissions. The corresponding effective stack
heights were calculated by a simpler method than that used for tall stacks.

Emissions from space heating were treated as "‘area sources’ as described
earlier. A grid produced areas 500 m by 500 m. The number of dwelling
units in each area was counted. Multiplying by 8 grams SO, per hour (or the
corresponding, temperature-corrected value) gave the mean emission rate for
that area (Figure 9-13). This amount was then divided by the number of
individual stacks (from 81 to 144) representing the area source.
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Figure 9-13. Spatial distribution of mean heating period in-
dustrial emissions from space heating, kg SOg/ka-hr.

The fact that area sources are represented by a large number of individual,
equivalent stacks simplifies the calculations a great deal. The distribution of
dwelling units in Bremen is such that only about 250 areas, 500 m by 500
m, are covered with dwellings. Since the density of these dwellings varies
spatially, the emission rates of the 250 types of stacks, in general, differ
from each other. Their physical dimensions and their plume rise values,
however, are equal, or are grouped into only two categories (downtown and
suburban). With the shift of calculated concentration fields from one point
source location to the other within an area of 500 m by 500 m, the
computing time is very much reduced.
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RESULTS OF SIMULATION EXPERIMENTS

An inventory of all possible steady-state ground-level concentration fields
forms the basis of simulation experiments. This inventory was obtained by
calculating concentration fields for all possible combinations of meteorolo-
gical parameters. It has already been noted that about 600 such combina-
tions, representing given weather situations, can occur in Bremen. This
number depends, of course, on the classification of windspeed and wind
direction used. 1f one calculates the concentrations at the points of a grid (a
grid distance of 500 meters) about 600 numbers have to be stored at each
grid point. Since the computer program was written for a grid of 2500
points, a total number of 1.5 million numbers have to be stored. If the
source inventory is assumed to be time-dependent (heating period, non-
heating period, etc.), the number of concentration values to be stored
increases considerably.

The use of concentration field inventory data together with frequency
distributions of relevant meteorological parameters permits the derivation of
frequency distributions of concentrations for each point on the grid. Other
statistics, as well, can be obtained quite simply, such as SO, wind roses.
Figures 9-14 to 9-17 demonstrate this clearly. Sulfur dioxide wind roses were
calculated for the four sites where monitoring stations were later installed,
These figures, together with Figures 9-11 to 9-13, show the possibility of
identifying large emission sources by means of SO, wind roses. It may seem
that this is by no means an easy task because emission sources with quite
different emission heights work together with meteorological factors having
complicated frequency distributions. It may be noted that the simulated SO,
wind roses coincide considerably well in structure with those obtained by
measurement.

Among the many experiments performed, the investigation of the influence
of boundary layer thickness on ground-level concentration was the most
interesting. The upper ceiling was lowered from 500 m to 25 m. In cases in
which the ceiling reached the effective height of an individual stack, this
effective height was reduced with the decreasing height of the ceiling until it
reached two-thirds its original value, This stack was then thrown out of the
inventory on the assumption that the plume would penetrate the ceiling
Figures 9-18 and 9-19 show how the isogram patterns change and they also
show the tremendously increased concentrations that result if the depth of
the mixing layer is approximately equal to the effective height of space
heating emissions. Figure 9-20 demonstrates this behavior far a specific
location in downtown Bremen. It is obvious that this picture looks different
for different locations. Only mathematical axperimentation of the kind
applied here can simulate the complicated behavior of ground-level concen-
trations,
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Figure 9-14. Calculated heating-period-SOo-wind rose for
Site 1 in downtown Bremen.
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Figure 9-15. Calculated heating-period-SOo wind rose for
Site 2 in downtown Bremen.
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Figure 9-16. Calculated heating-period-SOo-wind rose for
Site 3 on the outskirts of Bremen.
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Figure 9-17. Calculated heating~period-S80o-wind rose for
Site 4, in close proximity to an industralized area.
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BREMEN, 1962
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Figure 9-18. Calculated field of ground-level-SOs concentration
in mg/m3 for a special meteorological situation and a boundary
layer thickness of 100 meters.
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Figure 9-19. Calculated fieid of ground-tevel-SOp concentration
in mg/m3 for a special meteorological situation and a boundary
layer thickness of 25 meters.
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Figure 9-20. Variations in ground-level concentrations of SOg
in downtown Bremen as a function of boundary layer thickness.

As mentioned in the introduction, frequency distributions of ground-level
concentrations were of chief interest from the beginning of this investigation.
The method for obtaining these for desired periods of time is straightfor-
ward. It must be stated, however, that the derived distributions are not
complete because up to now no theory exists for explaining the dilution of
pollutants under calm weather conditions. These cases, therefore, were ex-
cluded from the statistics as were cases with limited boundary layer depths.
Neither source of error, however, plays an important role in Bremen. The
frequency of calm conditions as well as the frequency of low-level inversions
was small during all periods of time investigated.

Stored data on fields of steady-state concentrations (Figure 9-21) form the
basis of statistics of this kind.

Steady-state concentration fields, together with frequency distributions of
meteorological parameters, can be used to calculate frequency distributions
of concentrations for each grid point. These distributions were characterized
by a set of three parameters:

1. The percentage of time {in hours) for which ground-level concentra-
tions exceeded a given value (0.1 milligram SO, per cubic meter).
Figure 9-22 shows the pattern of this parameter for the heating period
of 1962. As seen, only 20 percent of the period concentrations in
downtown Bremen were below 0.1 milligram SO, per cubic meter.
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BREMEN, 1962
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Figure 9-21. Typical possible field of calculated steady-state
ground-level SOp concentrations in mg/m3

2. The mean concentration for the period. Figure 9-23 shows the pattern
of this parameter. Typically, the pattern of the mean concentration
shows little structure and does not contain much information.

3. An upper percentile; for example, the 97.6th percentile. The numbers
in Figure 9-24 indicate that for only 2.5 percent of the time {in hours)
concentrations exceeded that value given by the respective number.

The following Figures, 9-26 thru 9-27 show the corresponding pattern for a
nonheating period in which only industrial sources are contributing emis-
sions.

It might be possible to define /missions-Grundbelastung with the help of
these maps of characteristic parameters. This investigation is one step for-
ward in this direction.

VALIDATION OF THE MODEL

During the heating period of 1967-68, four monitoring stations were in-
stalled at specially chosen locations, The locations were planned as stra-
tegically as possible. First of all,.an attempt was made to place all stations
on a mean concentration isogram (Figure 9-23). Second, an attempt was

9.24



N

10 BREMEN 1962

B8 INDUSTRY [ RESIDENTIAL AREAS

® MEASURING SITES

Figure 9-22. Percentage of cases (hours) for which ground-
level concentrations exceeded 0.1 mg SO/m3. Winter 1962.
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Figure 9-23.

Mean ground-fevel~SQo concentration in mg/m3.
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BREMEN 1962
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Figure 9-24. 97.5th percentile SOy concentrations in mg/m3.
Winter 1962.
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Figure 9-25. Percentage of cases (hours) for which ground-
level concentration exceeded 0.1 mg SOp/m3. Summer 1962.
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Figure 9-26. Mean ground-level-SOo concentration in mg/m3-

Summer 1962.
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Figure 9-27. 97.5 percentile of ground

in mg/m3. Summer 1962.
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made to locate stations in areas as diverse as possible. Station 1 was located
in a “normal’” downtown area, surrounded mainly by residences. Station 2
was located in the very center of the city on an island. It was surrounded,
however, on all sides by the water of the river Weser and of the waterworks,
Station 3 was located on the outskirts of the city, separated from downtown
Bremen by a large park with tall trees. Station 4 was located in the near
vicinity of a large plant.

The monitoring stations measured half-hourly values of SO, concentrations,
From these values, frequency distributions were derived for every month of
the period and for the period as a whole. At the same time, mathematical
simulation of the same distributions was performed using the latest version
of the emission source inventory and utilizing meteorological statistics for
the sampling period. Figures 9-28 through 9-31 show comparisons of ob-
served and calculated frequency distributions. The simulation of Station 1
{downtown ‘“‘normal’’ area) is quite satisfactory, as indicated in Table 9-1.
For Station 2 (waterworks on the Weser island), the model obviously
overestimates the concentrations systematically (Figure 9-29). Overestimation
may occur for one or both of two reasons: absorption at the water surfaces,
or an insufficient spread as a result of improperly chosen urban plume
standard deviations. The same holds for Station 3 (separated from downtown
Bremen by a large park), where the filtering effect of the park was not taken
into account.

At Station 4 (in the vicinity of a large plant}), the reverse is observed. The
model systematically underestimates the concentrations. Since emissions
from low-level sources of space heating are small in the neighborhood of that
station, low concentration values could be expected. The comparatively high
concentrations that actually occur have their origin in uncontroliable low-
level emissions, which could not be taken into account, from the nearby
plant.

Table 9-2 summarizes the observed and calculated mean concentrations for
each monitoring station,

Finally, it can be stated that it is worthwhile to invest more effort in
diffusion modeling, for simulation may one day be a very important tool in
city planning.
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Figure 9-28. Comparison between observed and computed

frequency distributions of ground-level concentrations in
downtown Bremen.
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Figure 9-29. Comparison between observed and computed

frequency distributions of ground-level concentrations in
downtown Bremen.
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Table 9-2. OBSERVED AND CALCULATED MEAN SO, CONCENTRATIONS

IN BREMEN; HEATING PERIOD, 1967-1968

(mg m>)
2 3 4
Site Calc.| Obs. | Calc.] Obs. [Calc.| Obs. | Calc.| Obs.
November 0.14( 0.11] 0.15| 0.10 {0.14 [ 0.08 | 0.05 | 0.10
December 0.10 0.081 0.12] 0.08 |0.10 | 0.06 j 0.03 | 0.07
January 0.10| 0.10| 0.12] 0.13 |0.09 | 0.08 { 0.04 | 0.08
February 0.090.08} 0.12 | 0.08 |[0.07 | 0.06 | 0.04 | 0.08
March 0.08 | 0.07 | 0.10} 0.04 {0.07 | 0.05 | 0.04 | 0.07
April 0.09| 0.07}0.11| 0.05 |0.06 | 0.05 | 0.05 | 0.07
May 0.05] 0.06{ 0.07} 0.03 |0.04 | 0.03 | 0.03| 0.05
Total 0.09 | 0.08] 0.12| 0.08 |0.08 | 0.06 | 0.04 | 0.08
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APPENDIX — GLOSSARY OF SYMBOLS

alt,y) absorption coefficient of the ground
h effective stack height

hg actual stack height

Ah plume rise

H height of dispersion ceiling

N total number of upwind sources

P{x,y}  receptor point

gl n) local source-strength density
Q source strength

T decay time, 1/y

U wind speed

(X,,,Y,,) source distance in downwind and crosswind directions, respectively

af wind direction angle coefficients

A source area

(£..m,) location of a point source

i 3.14

0y,0; standard deviations of plume spread in y and z directions, respec-
tively

¥ travel time

X concentration
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14. DISCUSSIONS

INTRODUCTION

The following discussions were submitted in writing to the editor, sub-
sequent to the Symposium. Attendees were given an open invitation to make
comments on the Symposium topic and all of their responses are included in
this chapter. Every author whose work was questioned was given an oppor-
tunity to read the question and to write a rebuttal if he felt one was needed.
The chapter is divided into two sections; the first includes the discussions of
Symposium papers and the second contains brief treatments of some addi-
tional approaches to multiple-source urban diffusion models.

RESPONSES TO INDIVIDUAL PAPERS

Lettau paper
Frank Pasquill

Regarding the effect on horizontal spread of the turning of wind with
height, | would like to refer to a matter that is discussed in more detail in a
paper that will shortly appear in the proceedings of a symposium on Recent
Research in Air Pollution held by the Royal Society in November, 1968.
Evidently, it is necessary to distinguish between the genera! distortion of a
plume and the ultimate contribution of this distortion to enhanced spread at
a given level. 1t turns out that there is a substantial time lag between these
two phenomena. Examination of field data for stable conditions, available at
the time of composing the foregoing paper, indicated that the effect on
spread at a given level was unimportant in relation to the spread produced
directly by the horizontal component of turbulence within about 5 km from
an elevated source and about 12 km from a ground source.
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Fortak Paper
Kenneth L. Calder

Dr. Fortak’s discussion again emphasizes the point first raised by Dr. Pasquill
at this meeting, that while a calculated spatial field of short-period average
pollution concentration cannot be expected to agree very closely with that
actually observed, the statistics obtained from an ensemble of such calcu-
lated concentration fields may well be in close agreement with reality.

As a small but important detail | was interested to see that Dr. Fortak has
considered the numerical integration errors associated with the choice of grid
size for the area-source specification. His conclusion that an area size of the
order of 50 meters by 50 meters may be required for a satisfactory
representation of a large number of point sources, is noteworthy, since, |
believe, this is much smaller than the size used in some urban models
currently being recommended for operational use.

Sheih, Davidson, and Friend Paper
Kenneth L. Calder

One point | found rather confusing in Drs. Sheih, Davidson, and Friend’s
paper was the initial statement that the model was derived from the statisti-
cal theory for turbulent diffusion, although later in the paper they stated
that the model was semi-empirical and not derivable from known physical
concepts. 1t would seem that the latter is a more true description since all
the adjustable parameters and constants of the model are apparently derived
by fitting observational data for sulfur dioxide in New York City. If this is
so, then agreement between the model predictions and actual observations
may be less impressive than for some other models where the parameter
values are estimated independently.

The considerable effort made in this study to develop an adequate method
for numerically integrating the emissions from a continuous area source is
noteworthy and in strong contrast to the crude procedures used in many
other models.

Mahoney, Maddaus, and Goodrich Paper

Harry Moses

One must bear in mind that the concentrations of a given pollutant such as
SO,, at a given station, is a function of several variables, Windspeed is one
of these variables. It is possible in a multivariate system to find that several
of the individual independent variables correlate poorly with the dependent
variable, but when taken together, show a high multiple correlation.
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