Zurück Vor +Ebene Home Inhalt Index Hilfe

Dreieck/Flächeninhalt von Umkreis und Inkreis

Gegeben ist ein gleichseitiges Dreieck . Berechnen Sie das Verhältnis der Flächeninhalte von Inkreis und Umkreis dieses Dreiecks.

Lösung:

Die Abbildung

zeigt ein gleichseitiges Dreieck. Der Mittelpunkt des Inkreises wird durch den Schnittpunkt der Winkelhalbierenden bestimmt. Der Mittelpunkt des Umkreises wird durch den Schnittpunkt der Mittelsenkrechten festgelegt. In einem gleichseitigen Dreieck sind Winkelhalbierende und Mittelsenkrechte identisch.

In einem gleichseitigen Dreieck gilt und .

Außerdem folgt aus den Ähnlichkeitssätzen

ist der Radius des Umkreises und ist der Radius des Inkreises.

Für die Flächeninhalte des Umkreises und des Inkreises gilt

Aus (1) folgt

Die Flächeninhalte von Inkreis und Umkreis bei einem gleichseitigen Dreieck verhalten sich wie .
Copyright Verlag Harri Deutsch AG  Stöcker DeskTop Mathematik