Zurück Vor +Ebene Home Inhalt Index Hilfe

Divisionssatz

Die Laplace-Transformation des Quotienten aus einer Originalfunktion und der Zeit t ist gleich dem Integral von s, der Variablen im Bildbereich, bis unendlich über die Bildfunktion der Originalfunktion :

Voraussetzung für die Konvergenz dieses Integrals ist, daß der Grenzwert existiert.
 
Zu berechnen ist die Laplace-Transformierte der Originalfunktion

Nach der Regel von de L'Hospital gilt für den Limes:

Die Bedingung für die Anwendung des Divisonssatzes ist also erfüllt, und in den Transformationstabellen findet man für die Originalfunktion die Bildfunktion :

Zurück Vor +Ebene Home Inhalt Index Hilfe

Copyright Verlag Harri Deutsch AG  Stöcker DeskTop Mathematik