Es soll die optimale Nutzungsdauer einer Maschine mit dem Anschaffungswert von TDM ermittelt werden. Die bisherigen Reparaturkosten in TDM in den Jahren sind in der Tabelle zusammengefaßt.
Folgende Bezeichnungen werden verwendet:
Nutzungsdauer
Nutzungszeit
abzuschreibender Betrag (Anschaffungswert)
Dann sind die Reparaturkosten während der Nutzungsdauer t. Die mittleren Kosten pro Nutzungszeiteinheit betragen dann
Die Reparaturkosten lassen sich mittels einer Trendfunktion aus den bisher angefallenen Kosten berechnen. In der Abbildung sind die bisher angefallenen Reparaturkosten dargestellt.
Offensichtlich kann man die Trendfunktion für die Reperaturkosten durch eine Gerade annähern
Die Parameter a und b lassen sich mittels der linearen Regression bestimmen. Dazu kann entweder das Pascal-Programm des Taschenbuches benutzt werden, oder man benutzt Mathematikprogramme wie Mathematica oder MapleV. Die Befehlsfolgen sind:
Mathematica
Fit[{0,0.3,0.8,1.2,1.4,1.6,2.0,2.3},{1,x},x]
MapleV
with(stats): linregress([0,0.3,0.8,1.2,1.4,1.6,2.0,2.3],[1,2,3,4,5,6,7,8]);Man erhält
Die Kostenfunktion kann unter der Annahme einer linearen Abhängigkeit der Trendfunktion für die Reparaturkosten weiter berechnet werden. Dazu wird benötigt:
Es gilt
Die letzte Formel entsteht aus der Summenformel für die arithmetische Reihe. Das ergibt für die Kostenfunktion
Für das Optimum (minimale Kosten) muß gelten
woraus
folgt.
Nach 11 Jahren ist die Maschine aus dem Arbeitsprozeß auszusondern.