Jedem geordneten Paar ist eindeutig ein Element zugeordnet. Die folgenden Axiome sind erfüllt:
Assoziativgesetz:
Existenz des neutralen Elements :
Existenz der inversen Elemente :
Eine Gruppe heißt kommutative oder Abelsche Gruppe, falls
zusätzlich gilt:
Kommutativgesetz:
Die Menge der ganzen Zahlen mit der gewöhnlichen Addition
ist eine Abelsche Gruppe.
Die Menge der Drehungen im dreidimensionalen Raum mit der
Hintereinanderausführung als Verknüpfung der Elemente
ist eine nichtkommutative Gruppe.