![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Doppelintegral, Grenzübergang einer Doppelsumme über
Flächenbereiche über eine Funktion
von zwei unabhängigen Variablen
(Integral in zwei Dimensionen),
analog zum einfachen Integral definiert:
Doppelintegral setzt sich aus äußerem und innerem Integral zusammen. Es wird durch zwei aufeinanderfolgende gewöhnliche Integrationen berechnet.
In Polarkoordinaten lautet das Flächendifferential
:
Dreifachintegral, berechnet man durch drei aufeinanderfolgende gewöhnliche Integrationen. Je nach Form des zu integrierenden Volumens wählt man entsprechend angepaßte Koordinaten bzw. passende Volumenelemente.
Volumen einer Kugel:
.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |